
TWO-STEP LATTICE SUPER-EXPONENTIAL ALGORITHM FOR BLIND 
EQUALIZATION OF MULTI-INPUT MULTI-OUTPUT CHANNELS 

Chong- Yung Chi, Faa- Yeu Wang and Meng- Chian Chiang 

Department of Electrical Engineering 
National Tsing Hua University, Hsinchu, Taiwan, R.O.C. 

Tel: 886-3-5731156, Fax: 886-3-5751787, E-mail: cychi@ee.nthu.edu.tw 

Abstract - Feng and Chi reported a two-step lattice 
super-exponential algorithm (2s-LSEA) for blind equal- 
ization of single-input single-output (SISO) channels 
that is superior to  Shalvi and Weinstein’s FIR filter 
based super-exponential algorithm (SEA) in faster con- 
vergence speed, lower computational complexity, and 
more reliable performance to  a variety of channels, be- 
sides modularity and low sensitivity to  parameter quan- 
tization effects of lattice structure. In this paper, a 2S- 
LSEA for multi-input multi-output (MIMO) channels 
is proposed that is also superior to Yeung and Yau’s 
SEA for MIMO channels in the same preceding advan- 
tages of the 2s-LSEA for SISO channels. Some simula- 
tion results are presented to support the efficacy of the 
proposed 2s-LSEA for MIMO channels. 

I. Introduction 
Multichannel blind equalization (deconvolution) is a 
crucial signal processing procedure to  mitigate the mul- 
tipath fading, multiple access interference (MAI) and 
noise effects of multiuser communication systems with 
only measurements ~ [ n ]  ( P  x 1 vector) given by 

x[n] = H[n] * u[n] + w[n] 
00 

= H[k]u[n - k ]  +w[n]  (1) 
k=-00 

where H[n] ( P  x K matrix) is the impulse response of 
an unknown multi-input multi-output (MIMO) 1’ inear 
time-invariant (LTI) channel, U[.] ( K  x 1 vector) in- 
cludes the K ( <  P )  users’ transmitted signals (symbol 
streams) u ~ [ n ] ,  u2[n], ..., u ~ [ n ] ,  and w[n] ( P  x 1 vec- 
tor) is additive noise. The MIMO linear FIR equalizer, 
denoted by V[n] ( K  x P matrix), of order L has been 
widely used to  process x[n] such that the equalizer out- 
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L 

e[.] = ~ [ n ]  * x[n] = v [ i ] x [ n  - i] (2) 

approximates a permutation of (alul[n - T I ] ,  azu2[n - 
7-21, ..., a ~ u ~ [ n  - T K ] ) ~  where ag’s are unknown scale 
factors and T ~ ’ S  are unknown time delays. 
Shalvi and Weinstein [ l ,  21 proposed a computationally 
efficient iterative super-exponential algorithm (SEA) 
for single-input single-output (SISO) ( K  = P = 1) 
channels. It has been extended to  the correspond- 
ing fractionally-spaced algorithm by Gomes and Bar- 
roso [3] as well as MIMO blind deconvolution algorithm 
by Yeung and Yau [4] with applications to  wireless com- 
munications. Yeung and Yau’s SEA for MIMO systems 
is also a multistage successive cancellation algorithm, 
but its software and hardware implementation is still 
limited by computational complexity. 
Recently, Feng and Chi [5] proposed a two-step lattice 
SEA (2s-LSEA) for SISO systems that is superior to  
the SEA due to much faster convergence speed, much 
lower computational complexity, and more reliable per- 
formance to  a variety of channels in addition to  mod- 
ularity and low sensitivity to parameter quantization 
effects of lattice structure [6]. In this paper, we fur- 
ther propose a 2s-LSEA for MIMO channels that also 
shares the advantages of the 2s-LSEA for SISO chan- 
nels. 

a=O 

11. Review of SEA for MIMO Channels 
Assume that we are given a set of measurements x[n], 
n = 0, 1, ..., N - 1 in the absence of noise and that 
V [ n ]  is an Lth-order K x P linear FIR filter with the 
( I C ,  j ) t h  component denoted by vk,j [n]. Let 

x.7 [.I = (., [nl, 2.7 [. - 11, ’ .  ‘ ,., [. - L1IT (3) 
V k , j  = ( v k , j [ o ] , w k , ~ [ ~ ] ,  . .  . , w k , ~ [ L ] ) ~  (4) 

0-7803-571 8-3/00/$10.00 02000 IEEE 634 VTC2000 



where x3[n] is the j t h  entry of ~ [ n ] .  Then the lcth entry 
of e[n] can be expressed as 

where 

where is the (m, j ) th  component of H[n]. Next, 
let us present the multistage successive cancellation 
(MSC) procedure [7] in which the SEA for MIMO chan- 
nels is employed for obtaining the optimum e[.]. 

MSC Procedure 

At the Kth stage, the MSC procedure includes the fol- 
lowing two steps: 

where 

in which 

dq,p = C4{e:-ll[n], x&1} (13) 

where C4{w, z} denotes the fourth-order joint cumu- 
lant of random variable w and random vector z as fol- 
lows 

C4{w,z} = cum{w,w,w*,z*}. (14) 

(15) 

As the algorithm converges, the optimum estimate 

6, [n] = e:] [n] = auq [n - TI 

is obtained, and the associated amount of interference 
ISI(etl[n])) (in the absence of noise) also converges to  
zero at  a super-exDonential rate, where 

Find one input estimate, said .̂,[.I (where q is 
unknown), and the associated channel estimates 
A 

h,,,[n], j = 1, 2, ..., P using the iterative SEA 
for MIMO channels. (16) 

{E,,, I%,3 [.I l 2  1 - max3,n{ IS,J [.I l 2  1 
ma%,, { Is,,.? [..I l 2  1 ISI(e,[n]) = 

Cancellation h of G,[n]. Update x3[n] by x3[n] - 
Gq[n] *h3,-,[n], j = 1, 2, ..., P such that the result- 
ing x[n] corresponds to the output of a P X  (K-K) 
channel. 

Then h3,4[lc] can be estimated as 

h 

h,,,[lcI = 

All the estimates Gl[n], G2[n], ..., G K [ ~ ]  are obtained 
in a non-sequential order through K stages. Next, let 
us briefly review the iterative SEA for MIMO channels 
used in (Tl). 

SEA f o r  MIMO Channels  

Assume that ~ [ n ]  is the output of a P x ( K  - K + 1) 
channel and Gq[n] will be estimated at  stage K. Let 

Assume that the (i - 1)th iteration of the SEA for 
MIMO channels ended up with the equalized signal 
e:-l1[n] (see (5)) associated with vi-1. At the i th  it- 
eration, vi is updated by 

(9) 

111. 2s-LSEA for MIMO Channels 
A. MIMO Lattice Fi l ter  

The LSEA and 2s-LSEA for MIMO channels to be pre- 
sented below begin with Friedlander's MIMO lattice 
LPE filter [8] that is summarized as follows: 

fm+l[n] = fm[n] - K;+ibm[n - 11 (18) 

bm+i[n] = b,[n - 11 - K::lfm[7~] (19) 

K;+1 = &+i(R;)-' (20) 

(21) K,+1 f = (RL)-l&+i 

&+l - - ~ { f m [ n I b 3 n  - 111 (22) 
RL = E{fm[nlf~[.nl} (23) 
RL = E{bm[n - l ]bg [n  - l]} (24) 

Two remarks regarding this MIMO lattice LPE filter 
are worth mentioning as follows: 
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As the SISO lattice LPE filter [6], it also shares 
the modularity and low sensitivity to parameter 
quantization effects. 

The forward prediction error fm[n] ( P  x 1 vec- 
tor) approximates a white vector random process 
for sufficiently large m. The backward prediction 
error b,[n] ( P  x 1 vector) is uncorrelated with 
bl[n] for m # 1. 

Some modifications to fm[n] and bm[n] are needed for 
the LSEA to be presented below. Let 

,-. 
fm[nI = U f f m b ]  (25) 

bm[n - 11 = Ubbm[n - 11 (26) 
h 

where Uf and ub are P x P matrices such that 

D L  = E{Fm[n]T,H[~]) = UfRkUfH (27) 
D L  = E{Gm[n - 1]Gg[n - 11) = UbR;UbH(28) 

are diagonal. The linear transformation matrices Uf 
and can be found through the Gram-Schmidt or- 
thogonalization procedure. Moreover, fm+l [n] given by 
(18) and b,+l[n] given by (19) can be simplified as 

fm+l[n] = fm[n] - E{fm[n]G,H[n - 11) 

p,] b,[n - 11 

. [ D A ] - Fm [ n] 

(29) 

(30) 

b -1- 

b,+l[n] = b,[n - 11 - E{b,[n - l]F,H[n]) 

that are actually free from matrix inversion since D b  
and D L  a;e diagonal. As a final remark, (R2) also 
applies to fm[n] and b,[n]. The modified MIMO LPE 
filter is also shown in Figure 1. 

B. LSEA for MIMO Channels 
Two versions of the LSEA for MIMO channels are 

to be ?resented. The one, denoted by LSEA-B, pro- 
cesses b3[n] to obtain the equalized signal e,[n], and 
the other, denoted by LSEA-F, processes TJ[n] to ob- 
tain eq[n]. 

LSEA-B: 
As shown in Figure 2, the equalized signal e,[n] is ob- 
tained by 
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The LSEA-B for MIMO channels is nothing but the 
SEA for MIMO channels presented in Section I1 with 
x3[n] ( ( L  + 1) x 1 vector) replaced by G,[n] ( P  x 1 
vector) and v , , ~  ( ( L  + 1) x 1 vector) replaced by c[j] 
( P  x 1 vector). At the i th iteration, v, is also updated 
by (9) in which 

g = Diag(Dt, D!, ..., DL) (33) 
D, = (d:o, dZ1, ..., d,,L) (34) T T  

dq,l = C4{eF-1][n], &[n])  (35) 

Two worthy remarks are as follows: 

(R3) Remark (Rl)  also applies to the proposed LSEA- 
B, that is computationally efficient simply because 
R is diagonal in the computation of U,. 

(R4) The performance of the proposed LSEA-B is sim- 
ilar to that of the SEA (in terms of ISI) since the 
former corresponds to a different implementation 
of the latter. 

LSEA-F: 
As shown in Figure 3, the equalized signal e,[n] is ob- 
tained by 

M 

e4[n] = c'[mlFJ[n - ml (36) 
m=O 

Let 

v = (cT[O], CT[1], .'., c T [ M ] ) T  (37) 

Through the same derivations as the LSEA-B, at the 
i th iteration, v, is also updated by (9) in which 

= Diag(D{, D{, ..., D{) (38) 

D, = @:cl, dE1, ..., d:M)T (39) 
d,,, = C4{eb-11[n],?~[n - m])  (40) 

Note that the diagonal k given by138) was obtained by 
the whiteness approximation for f ~ [ n ]  (i.e., an ampli- 
tude equalized signal) as mentioned in (R2). In other 
words, only the channel phase distortion is left to the 
proposed LSEA-F for further processing, thus leading 
to the following remark. 

(R5) The proposed LSEA-F to which (R3) also ap- 
plies can significantly and rapidly reduce the as- 
sociated IS1 (see (16)). However, the resultant 
IS1 may be higher than that associated with the 
LSEA-B when the whiteness approximation is not 
very applicable for the chosen J .  
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C .  2s-LSEA for MIMO Channels 

The proposed iterative 2s-LSEA for MIMO channels 
consists of the following two steps: 

(Sl) Update v, (defined as (37)) by (9) using the pro- 
posed LSEA-F for iterations i = 1, 2, ..., I .  

(S2) Update Y, (defined as (32)) by (9) using the pro- 
posed LSEA-B for i > I with the initial condition 
e r l [n]  obtained at Step (Sl). 

Let us conclude this section with the following remark. 

(R6) As mentioned in (R5), the LSEA-F used in (Sl) 
can efficiently reduce the associated IS1 (see (16)), 
and thus is helpful to the convergence speed of the 
LSEA-B used in Step (S2). 

IV. Simulation Results 
Two simulation examples are to be presented to sup- 
port the efficacy of the proposed LSEA-B and 2s-LSEA 
for MIMO channels. In each example, a two-input two- 
output system was considered and non-Guassian syn- 
thetic data x[n] were generated with SNR of 20 dB 
(white Guassian noise) for each output. Then x[n] were 
processed by the SEA and LSEA-B with L = 29, and 
by the 2s-LSEA with I = 1, J = 24 and M = 24 
for the LSEA-F used in Step (Sl)  and L = 29 for the 
LSEA-B used in Step (Sa). The initial conditions YO 
(see (8), (32) and (37)) used by the three algorithms 
were equivalent. Then the IS1 associated with ul[n] 
was calculated from thirty independent runs. 

Example 1: The two-input two-output FIR channel 
H[n] (taken from [7]) was given by 

h1,1 [n] = [0.6455, -O.3227,0.6455, -0.32271 
hl,2[n] = [0.6140,0.3684] 
h2,1[n] = [0,0.3873,0.8391,0.3227] 
h2,2[72] = [0,-0.2579, -0.6140,0.8842, 

0.4421,0,0.2579] 

The two driving inputs u1[n] and u2[n] were binary 
random sequences of {+l, -1) with equal probability 
(1/2) for +1 and -1, and the data length N = 1500. 
The initial condition YO with w1,1[n] = S[n - 151 and 
211,2[n] = S[n - 151 was used by the SEA. 
The ISI(’ii1 [n]) versus iteration number associated with 
the SEA, LSEA-B and 2s-LSEA are shown in Figures 
4(a), 4(b) and 4(c), respectively. One can see, from 
these figures, that as mentioned in (R4), the results 
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shown in Figure 4(a) are similar to those shown in Fig- 
ure 4(b), and that the proposed 2s-LSEA converges 
faster (spending 2 iterations) than the other two algo- 
rithms (spending 3 iterations) although the resultant 
ISI’s are similar for the three algorithms. These results 
are therefore consistent with (R6). 

Example 2: In this example, 

hl,i[n] = [0.4,1, -0.3,1.6, -0.4,0.2,0.4, -0.4,0.1] 
h1,2[1~] = [0.3,0.2, -0.6,0.2, -0.3,0,0.25, -0.051 
h2,1[n] = [-0.1,0.8,1.7,1,0.5,0.9,0.5, -0.11 
h2,2[.] = [0.3,0.7,1.3,1.5,1.2,0.5,0.4, -0.3,0.2] 

The two driving inputs u1[n] and u2[n] were 4-QAM 
random sequences of {f l  k j }  with equal probability 
(1/4) for each alphabet and the data length N = 2500. 
The initial condition YO with v1,1[n] = S[n - 121 and 
v1,2[n] = 0 was used by the SEA. 
The simulation results corresponding to those shown 
in Figures 4(a), 4(b) and 4(c) are shown in Figures 
5(a), 5(b) and 5(c), respectively. As drawn in Example 
1, the SEA, the proposed LSEA-B and 2s-LSEA have 
similar performance, while the proposed 2s-LSEA con- 
verges (spending 2 iterations) faster than the other two 
algorithms (spending 3 iterations). These simulation 
results support the efficacy of the proposed LSEA-B 
and 2s-LSEA. 

V. Conclusions 
We have presented three algorithms, LSEA-B, LSEA-F 
and 2s-LSEA for blind deconvolution of MIMO chan- 
nels that share the merits of lattice structure as men- 
tioned in (Rl) .  The performance of the LSEA-B and 
2s-LSEA in terms of IS1 is similar to that of Yeung and 
Yau’s SEA (see (R4)), and the convergence speed of the 
LSEA-B is also similar to that of Yeung and Yau’s SEA 
while the 2s-LSEA converges fastest (see (R6)). The 
applications of the proposed three algorithms to wire- 
less communications are currently under study. 

VI. References 

[l] 0. Shalvi and E. Weinstein, Universal Methods for 
Blind Deconvolution, A chapter in Blind Deconvo- 
lution, S. Haykin, ed., Prentice-Hall, New Jersey, 
1994. 

[2] 0. Shalvi and E. Weinstein, “Super-exponential 
methods for blind deconvolution,” IEEE Trans. In- 
formation Theory, vol. 39, no. 2, pp. 504-519, March 
1993. 

VTC2000 



[3] J .  Gomes and V. Barroso, “A super-exponential al- 
gorithm for blind fractionally spaced equalization,” 
IEEE Signal Processing Letters, vol. 3, pp. 283-285, 
Oct. 1996. 

[4] K.L. Yeung and S.F. Yau, “A cumulant-based 
super-exponential algorithm for blind deconvolu- 
tion of multi-input multi-output systems,” Signal 
Processing, vol. 67, pp. 141-162, 1998. 

[5] C.-C. Feng and C.-Y. Chi, “A two-step lattice 
super-exponential algorithm for blind equaliza- 
tion,” Proc. 4th Symposium on Computer and 
Communications, Taoyuan, Taiwan, Oct. 7-8, 1998, 

[6] M.H. Hayes, Statistical Digital Signal Processing 
and Modeling, John Wiley and Sons, New York, 
1996. 

[7] J.K. Tugnait, “Identification and deconvolution of 
multichannel linear non-Gaussian processes using 
higher order statistics and inverse filter criteria,” 

pp. 329-335. 

Modified MIMO Lattice LPE Filter 

IEEE Trans. Signal Processing, vol. 45, pp. 658- 
672, Mar. 1996. Figure 2. The proposed LSEA-B for MIMO channels. 

[8] B. Friedlander, “Lattice filter for adaptive filter- 
ing,” Proc. IEEE, vol. 70, pp. 829-868, Aug. 1982. 

fm+ 1 [nl 
Equation (29) 

Gram-Schmidt 

Gram-Schmidt 

Equation (30) 
:n1 

Figure 1. Stage m of the modified MIMO Lattice LPE 
filter. 
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Figure 3. The proposed LSEA-F for MIMO channels. 
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Figure 4. Simulation results of Example 1. IS1 associ- 
ated with (a) SEA, (b) LSEA-B and (c) 2s-LSEA. 
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Figure 5. Simulation results of Example 2. IS1 associ- 
ated with (a) SEA, (b) LSEA-B and (c) 2s-LSEA. 
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